Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Florid...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecological Engineering
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of temperature on organic matter transformation in a different ambient nutrient availability

Authors: Dorota Górniak; Bożena Jaworska; Julita Dunalska; Evelyn E. Gaiser;

Effect of temperature on organic matter transformation in a different ambient nutrient availability

Abstract

We experimentally manipulated the thermal environment in laboratory mesocosms to evaluate the effect of temperature on organic matter transformation in two systems of lower and higher ambient nutrient availability. We used a system of 6 mesocosms, equipped with heating and cooling systems; 3 were filled with water from a mesotrophic lake and 3 with water from a eutrophic lake. Each of the 3 mesocosms were maintained at different temperatures: ambient lake temperature (10 °C and 20 °C), ambient +5 °C, and ambient +10 °C and the experiment was replicated in twice, in the spring and summer seasons. We measured rates of physicochemical and bacteriological parameters changes over a 2-day period. Results of the study demonstrated that, irrespective of nutrient concentration, an increase in temperature resulted in enhanced the level of labile organic matter, indicated by significantly elevated concentrations of dissolved organic carbon (DOC) and low values of SUVA (specific UV absorbance. = Abs 260·1000/DOC). The effect of temperature was stronger in the lower nutrient concentration in the spring experiment treatments elevated by 5 °C. The increase in temperature was additionally accompanied by significant increased total bacterial counts (TBC), biomass (BB) and heterogeneity of bacterioplankton. In the higher nutrient concentration, the increase in temperature exerted a greater influence on the dynamics of concentration of heteromorphic organic matter, shown by the negative correlation between particulate organic carbon (POC) and DOC content and TBC value. The accumulation of considerable quantities of refractory DOC and POC and low bacterioplankton activity may intensify the rate of degradation of eutrophic lake ecosystems.

Countries
United States, Poland
Keywords

climate change, organic carbon, temperature, bacteria lake

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Green