Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecological Indicator...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecological Indicators
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Abiotic control modelling of salt marsh sediments respiratory CO2 fluxes: application to increasing temperature scenarios

Authors: Bernardo Duarte; Joana Freitas; Juliana Valentim; João Paulo Medeiros; José Lino Costa; Helena Silva; João Miguel Dias; +3 Authors

Abiotic control modelling of salt marsh sediments respiratory CO2 fluxes: application to increasing temperature scenarios

Abstract

Sediment microbial communities are responsible for several ecosystem key-processes such as decomposition. However, these communities depend on aerobic respiration making them a source of CO2 to the atmosphere. Since sediments are a known important carbon sink, it becomes important to address the factors that modulate sediment respiration and therefore CO2 efflux to the atmosphere. Therefore, the present work aimed to assess the main factors controlling sediment respiratory activity in salt marshes. Sediment respiration and several sediment abiotic characteristics were assessed in two salt marshes from Ria de Aveiro coastal lagoon with contrasting environmental conditions. Sediment respiration had significant differences across seasons and salt marshes, and different patterns of activity were found for each salt marsh. Statistical analysis and modelling by Generalized Linear Model (GLM) revealed that sediment respiration is mostly influenced by organic matter quality (C:N ratio), sediment temperature and sediment pH. Nevertheless, as temperature appeared to be one of the most important factors influencing CO2 effluxes from the sediments, its influence during possible global warming scenarios was focused. The simulations produced by the GLM using the IPCC scenarios projections, indicated that salt marshes will tend do decrease their CO2 emissions with the increasing temperatures, reinforcing their role as important carbon sinks. This can be interpreted as an ecosystemic counteract measure toward a reduction of the increasing temperature by reducing the amounts of greenhouse gas emissions, namely CO2.

Country
Portugal
Keywords

Respiration rates, Microbial community, Climate change, Sediment, Generalized Linear Model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
gold