Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article . 2009 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article . 2009
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High temperature materials for CO2 capture

Authors: Paul A. Webley; Simon Wilson; M. K. Ram Reddy; João C. Diniz da Costa; Kaustubh Joshi; Ranjeet Singh;

High temperature materials for CO2 capture

Abstract

AbstractThe potential benefits of precombustion carbon dioxide capture are well documented, and adsorption remains a promising separation process in this area. This paper details work to identify and assess the potential of high temperature adsorbents suitable for precombustion capture.The aim of this paper is to schematically identify adsorbents that are suitable for carbon capture in different temperature ranges. A critical aspect of this work is to assess the materials not only in terms of carbon dioxide isotherms and absolute loading, but to consider the wide range of other properties that are required to achieve an industrially feasible adsorbent - selectivity, cycling capacity, stability, kinetics, high pressure loading, fate of other components (including water, H2S, NH3, CO and N2). It is only when all these requirements are sufficiently met, that an adsorbent can be consider worthy of industrial consideration. A range of analytic screening tests are described to enable a full characterisation of the merit of a specific adsorbent.The adsorbents investigated are zeolites (NaX, calcium chabazite), commercially available hydrotalcite, layered double hydroxides/oxides (LDH/Os), and magnesium double salts. Each operates in a different temperature range and offers potential for integration within an Integrated Gasification and Combined Cycle precombustion process train.Some of the promising and significant conclusions of this work are - •Magnesium double salts present very favourable carbon dioxide isotherms and demonstrate significant carbon dioxide loading and the isotherms are suitable for PSA or TSA operation at high temperature.•LDHs or their derivatives as layered double oxides can adsorb up to 1.5mol/kg CO2. Water does not affect CO2 sorption, and the material has good recyclability in TSA.•The selectivity of hydrotalcite is well documented. However there is no reported literature on the adsorptive behaviour of these materials with respect to trace components - H2S and NH3. These results are reported.•Calcium chabazite displays useful CO2 loading potential in a unique temperature range around 200 ∘C.•NaX has the potential to replace Selexol at an operating temperate of 130 ∘C.

Related Organizations
Keywords

high temperature adsorbents, PSA, IGCC, Energy(all), CO2 capture, TSA

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Energy Research