
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Thermal assessment of ambient pressure dried silica aerogel composite boards at laboratory and field scale
Abstract In the context of increasing energy costs and the need for global reduction of CO2 emissions, the development of superinsulation materials for the construction sector allows the design of low-energy buildings. Since still being in an experimental or at early-commercial stage, R&D of these materials focused on its final application is required, to accelerate access to the market for renovation of the building stock where space is a critical metric. In this paper, the experimental assessment of the thermal performance of a novel ambient pressure dried silica aerogel based composite is presented. In order to provide assessments at both, material and system levels, stress-strain tests, hot plate measurements, as well as full scale tests under realistic boundary conditions were conducted. The overall results are that this material provides good insulation properties (thermal conductivity in the range of 0.015–0.018 W/mK), along with sufficient mechanical properties, and allows for the creation of superinsulating assemblies even at small wall thickness.
In-situ, Fullscale, Superinsulation, Insulation, Bulding envelope, Experimentation, Aerogel
In-situ, Fullscale, Superinsulation, Insulation, Bulding envelope, Experimentation, Aerogel
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).64 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
