
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
The structure of uncertainty in future low carbon pathways
Low carbon scenario and transition pathway analysis involves the consideration of uncertainties around future technological and social changes. This paper argues that uncertainty can be better understood, and the strategic and policy effectiveness of scenarios or pathways thereby improved, through a systematic categorisation of the different kinds of certain and uncertain elements of which the future is comprised. To achieve this, this paper makes two novel methodological contributions. First it proposes a system conceptualisation which is based on a detailed description of the dynamics of the actors and institutions relevant to the system under study, iteratively linked to a detailed representation of the technological system. Second, it argues that as a result of developing this actor-based low carbon scenarios approach it is possible to characterise future elements of the system as either pre-determined, actor contingent or non-actor contingent. An outline scenario approach is presented, based on these two contributions. It emerges that the different categories of future element are associated with different types of uncertainty and each prompt different strategic policy responses. This categorisation of future elements therefore clarifies the relationship of scenario content to specific types of policy response, and thus improves the policy tractability of resulting scenarios.
- University College London United Kingdom
- Imperial College London United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).58 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
