
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Growth and yield stimulation under elevated CO 2 and drought: A meta-analysis on crops

Exposure of plants to elevated CO2 (eCO2) has a number of physiological effects, including increased photosynthetic carbon fixation and decreased stomatal conductance, resulting in greater growth and yield and also improved water use efficiency. Therefore, eCO2 is considered to ameliorate the adverse effects of drought. To test this assumption in existing literature, we undertook a meta-analysis to study the interactive effects of eCO2 and experimentally imposed drought on biomass and yield of crops and pasture grasses. We found that for crop species with C3 metabolism, eCO2 stimulates biomass accumulation and yield under both well-watered and dry conditions to a similar extent. For C4 crops, however, stimulation of biomass accumulation and yield by eCO2 occurs only under dry growing conditions. Disentangling other functional groups (annuals vs. perennials, crop species, experimental setups) also showed that plant metabolism greatly determines the overall effect of eCO2 and water availability on plant performance. Our results suggest that crops grown in areas with limited water availability will benefit from future eCO2, regardless of their metabolism. Drought leads to stomatal limitation of photosynthesis in both C3 and C4 crops, which is alleviated when the plants are grown under eCO2.
- University of Groningen Netherlands
- Central Queensland University Australia
- University of Melbourne Australia
- Central Queensland University Australia
- Swinburne University of Technology Australia
580, 070303 Crop and Pasture Biochemistry and Physiology, C3-C4 metabolism, 069902 Global Change Biology, Free Air CO2 enrichment, Open top chamber, Wheat, Biomass, Soil moisture, Global change, Moisture
580, 070303 Crop and Pasture Biochemistry and Physiology, C3-C4 metabolism, 069902 Global Change Biology, Free Air CO2 enrichment, Open top chamber, Wheat, Biomass, Soil moisture, Global change, Moisture
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).147 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
