
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Characterization and density separation of coal gasification residues generated from the Zecomix research infrastructure

handle: 2108/151507
Abstract This paper presents the results of characterization investigations carried out on the solid residues produced during coal gasification tests performed in the Zecomix (Zero Emission of CarbOn with MIXed technology) research infrastructure. In this pilot-scale plant, coal is gasified in a steam/oxygen-blown bubbling fluidized bed containing olivine. The solid residues, collected both directly from the solid bed (bed ash) and downstream from it (mixed ash), were characterized in terms of their main physical, chemical and mineralogical properties with the aim of identifying suitable management strategies for each of them within the Zecomix process. Thus, an experimental protocol was also developed to separate the organic and inorganic fractions of both ash types. The main constituents of the bed ash were Mg, Si and Fe, which represent the elemental components of olivine. The total organic carbon content of the bulk bed ash was of 5%, while that of the bulk mixed ash proved to be significantly higher (24–27%). Finally, the particle size and density separation procedure developed in this work showed to be effective for separating the organic and inorganic fractions of the bulk samples of both types of residues, allowing to reach separation efficiencies higher than 90%.
660, Settore ICAR/03 - INGEGNERIA SANITARIA - AMBIENTALE, Coal gasification, Ash, Mineralogy, Coal gasification; Ash; Mineralogy; Density separation, Density separation
660, Settore ICAR/03 - INGEGNERIA SANITARIA - AMBIENTALE, Coal gasification, Ash, Mineralogy, Coal gasification; Ash; Mineralogy; Density separation, Density separation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
