Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Ecology and C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Ecology and Conservation
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Ecology and Conservation
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Ecology and Conservation
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wageningen Staff Publications
Article . 2021
License: CC BY NC ND
versions View all 3 versions
addClaim

Aboveground biomass in secondary montane forests in Peru: Slow carbon recovery in agroforestry legacies

Authors: orcid Aragón, Susan;
Aragón, Susan
ORCID
Harvested from ORCID Public Data File

Aragón, Susan in OpenAIRE
orcid Salinas, Norma;
Salinas, Norma
ORCID
Harvested from ORCID Public Data File

Salinas, Norma in OpenAIRE
orcid Nina-Quispe, Alex;
Nina-Quispe, Alex
ORCID
Harvested from ORCID Public Data File

Nina-Quispe, Alex in OpenAIRE
Qquellon, Vicky Huaman; Paucar, Gloria Rayme; Huaman, Wilfredo; Porroa, Percy Chambi; +8 Authors

Aboveground biomass in secondary montane forests in Peru: Slow carbon recovery in agroforestry legacies

Abstract

Andean tropical montane forests (TMF) are hotspots of biodiversity that provide fundamental hydrological services as well as carbon sequestration and storage. Agroforestry systems occupy large areas in the Andes but climatic pressures, market volatility and diseases may result inagroforest abandonment, promoting secondary succession. Secondary forests are well-adapted and efficient carbon sinks whose conservation is vital to mitigate and adapt to climate change and to support biodiversity. Little is known, however, about how secondary TMF recover their aboveground biomass (AGB) and composition after abandonment. We established a 1.5 ha plot at 1780 masl on a 30-year old abandoned agroforest and compared it against two control forest plots at similar elevations. Agroforestry legacies influenced AGB leading to far lower stocks (42.3 ± 5.4–59.6 ± 7.9 Mg ha−1 using allometric equations) than those expected after 30 years (106 ± 33 Mg ha−1) based on IPCC standard growth rates for secondary montane forests. This suggests a regional overestimation of mitigation potentials when using IPCC standards. Satellite-derived AGB largely overestimated our plot values (179 ± 27.3 Mg ha−1). Secondary growth rates (1.41–2.0 Mg ha−1 yr−1 for DBH ≥ 10 cm) indicate recovery times of ca. 69 to 97 years to reach average control AGB values (137 ± 12.3 Mg ha−1). This is 26 years above the average residence time of montane forests at our elevation (71 ± 1.91 years) suggesting a non-recovery or far slower recovery to control AGB values. Three variables appear to define this outcome compared to the control plots: lower DBH (15.8 ± 5.9 cm vs 19.8 ± 11.0 cm), lower basal area (12.67 ± 0.7 vs 28.03 ± 1.5 m2 ha−1) and higher abundance of lighter-wood tree genera (0.46 ± 0.10 vs 0.57 ± 0.11 gr cm3) such as Inga, a common shade-tree in Andean agroforests. With 3.2 million hectares committed to restoration, Peru needs to target currently neglected TMF recovery schemes to support biodiversity, water and carbon storage and fulfill its international commitments.

Country
Netherlands
Keywords

Ecology, Climate change mitigation, Land use legacy, Nature based solutions, Life Science, Biomass, Agroforestry, Tropical secondary forests, QH540-549.5

Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
11
Top 10%
Average
Top 10%
4
Green
gold