Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Greenhouse Gas Control
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles

Authors: Rongyue Sun; Yingjie Li; Hongling Liu; Chunmei Lu; Changtian Liu;

CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles

Abstract

Abstract The CO2 capture behavior of carbide slag as industrial waste dumped from a chlor-alkali plant in calcination/carbonation cycles was investigated in a fixed-bed reactor and a thermogravimetric analyzer, which was furthermore compared with that of hydration of CaO (Hy-CaO) and limestone. The main component of the carbide slag was the same as that of Hy-CaO which was Ca(OH)2. The effects of reaction temperature, particle size and cycle number on CO2 capture of the carbide slag were discussed. The carbide slag exhibited greater ultimate carbonation conversion than Hy-CaO and the limestone for the same number of cycles. For the same number of cycles, the calcined carbide slag had a smaller volume of pores 155 nm in diameter than the two other calcined sorbents. This was maybe a reason why the carbide slag exhibits a higher ultimate carbonation conversion than the Hy-CaO and the limestone. The cyclic carbonation conversion of the carbide slag was lower than that of the limestone before a certain time (called transition time); however, the converse result was observed after that time. It was attributed to the difference in the volume of pores

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    104
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
104
Top 1%
Top 10%
Top 10%
Related to Research communities
Energy Research