
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Complementing the intrinsic repertoire of Ustilago maydis for degradation of the pectin backbone polygalacturonic acid

pmid: 31715206
Microbial valorization of plant biomass is a key target in bioeconomy. A promising candidate for consolidated bioprocessing is the dimorphic fungus Ustilago maydis. It harbors hydrolytic enzymes to degrade biomass components and naturally produces valuable secondary metabolites like itaconic acid, malic acid or glycolipids. However, hydrolytic enzymes are mainly expressed in the hyphal form. This type of morphology should be prevented in industrial fermentation processes. Genetic activation of these enzymes can enable growth on cognate substrates also in the yeast form. Here, strains were engineered for growth on polygalacturonic acid as major component of pectin. Besides activation of intrinsic enzymes, supplementation with heterologous genes for potent enzymes was tested. The presence of an unconventional secretion pathway allowed exploiting fungal and bacterial enzymes. Growth of the engineered strains was evaluated by a recently developed method for online determination of residual substrates based on the respiration activity. This enabled the quantification of the overall consumed substrate as a key asset for the assessment of the enzyme degradation potential even on polymeric substrates. Co-fermentation of endo- and exo-polygalacturonase overexpression strains resulted in efficient growth on polygalacturonic acid. In the future, the approach will be extended to establish efficient degradation and valorization of pectin.
- Heinrich Heine University Düsseldorf Germany
- Helmholtz Association of German Research Centres Germany
- Cluster of Excellence on Plant Sciences Germany
- Institute of Microbiology China (People's Republic of)
- Forschungszentrum Jülich Germany
info:eu-repo/classification/ddc/540, Hyphae, Computational Biology, Plants, Organ Specificity, Fermentation, Ustilago, Pectins, Amino Acid Sequence, Biomass, Sequence Alignment
info:eu-repo/classification/ddc/540, Hyphae, Computational Biology, Plants, Organ Specificity, Fermentation, Ustilago, Pectins, Amino Acid Sequence, Biomass, Sequence Alignment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
