Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Experimental Marine Biology and Ecology
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How many habitats are there in the sea (and where)?

Authors: FRASCHETTI, Simonetta; TERLIZZI, Antonio; BOERO, Ferdinando;

How many habitats are there in the sea (and where)?

Abstract

Current policies of habitat conservation, recovery, and management are strongly biased in favour of terrestrial systems, being poorly applicable to marine environments. A sound habitat classification, leading to spatially explicit accounts on the distribution of marine habitats and communities, is a prerequisite to identify conservation priorities, based on appropriate methods for assessing habitat sensitivity to human disturbance, aimed at preventing habitat loss. The ten major European marine habitat classifications, recognizing a total of 1121 marine habitats, have been here revised, and their major differences have been formally tested in terms of multivariate dissimilarity. Mediterranean-based classifications resulted rather uniform, their habitats forming a separate cluster from the rest of European ones; these differences might be due to either distinct ecological features, or to divergences in the way habitats are classified. Either too vague or too detailed classifications, leading to cumbersome appreciations of biodiversity at habitat level, fail to provide proper tools for the conservation and management of marine environments. Different species assemblages can inhabit the same habitat type, representing the well-know natural variability that, at large scale, should not affect the appreciation of habitat distribution. Intra-habitat natural variability, in fact, causes a misleading qualitative interpretation of small-scale biodiversity distribution. Mediterranean classifications have been integrated and simplified by identifying habitats according to explicit criteria: level on the shore, type of primary substrate, presence of bioconstructors, presence of habitat formers, presence of ecosystem engineers. The motivating idea is to limit the current emphasis on spatial dominance as the only criteria for the introduction of species, assemblages, and habitats in the lists, towards a clearer recognition of the structural and functional role of biodiversity. The reduction of previous classifications to a list of 94 Mediterranean marine habitat types represents an initial attempt at providing a simple and flexible tool for the evaluation of biodiversity at habitat level, leading to more feasible conservation measures, potentially extendable at European scale. (C) 2008 Elsevier B.V. All rights reserved.

Current policies of habitat conservation, recovery, and management are strongly biased in favour of terrestrial systems, being poorly applicable to marine environments. A sound habitat classification, leading to spatially explicit accounts on the distribution of marine habitats and communities, is a prerequisite to identify conservation priorities, based on appropriate methods for assessing habitat sensitivity to human disturbance, aimed at preventing habitat loss. The ten major European marine habitat classifications, recognizing a total of 1121 marine habitats, have been here revised, and their major differences have been formally tested in terms of multivariate dissimilarity. Mediterranean-based classifications resulted rather uniform, their habitats forming a separate cluster from the rest of European ones; these differences might be due to either distinct ecological features, or to divergences in the way habitats are classified. Either too vague or too detailed classifications, leading to cumbersome appreciations of biodiversity at habitat level, fail to provide proper tools for the conservation and management of marine environments. Different species assemblages can inhabit the same habitat type, representing the well-know natural variability that, at large scale, should not affect the appreciation of habitat distribution. Intra-habitat natural variability, in fact, causes a misleading qualitative interpretation of small-scale biodiversity distribution. Mediterranean classifications have been integrated and simplified by identifying habitats according to explicit criteria: level on the shore, type of primary substrate, presence of bioconstructors, presence of habitat formers, presence of ecosystem engineers. The motivating idea is to limit the current emphasis on spatial dominance as the only criteria for the introduction of species, assemblages, and habitats in the lists, towards a clearer recognition of the structural and functional role of biodiversity. The reduction of previous classifications to a list of 94 Mediterranean marine habitat types represents an initial attempt at providing a simple and flexible tool for the evaluation of biodiversity at habitat level, leading to more feasible conservation measures, potentially extendable at European scale.

Country
Italy
Keywords

Habitat classification, Habitat Directive, Mapping, Mediterranean Sea, Habitat Directive, Habitat classification, Mapping, Mediterranean Sea, Habitat classification; Habitat Directive; Mapping; Mediterranean Sea

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 10%