Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Environme...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Environmental Management
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Management
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Managing low productive forests at catchment scale: Considering water, biomass and fire risk to achieve economic feasibility

Authors: María González-Sanchis; Guiomar Ruiz-Pérez; Antonio D. Del Campo; Alberto Garcia-Prats; Félix Francés; Cristina Lull;

Managing low productive forests at catchment scale: Considering water, biomass and fire risk to achieve economic feasibility

Abstract

Semi-arid forests are water limited environments considered as low-productive. As a result, these forests usually end up unmanaged and abandoned, with the subsequent wild fire risk increasing, water yield decreasing and a general diminishing of the forest resilience. Hydrological-oriented silviculture could be a useful alternative that increases management possibilities by combining forest productivity and water yield. However, the slight water yield increase after forest management together with the low forest productivity, could make this option insufficient for semi-arid forests, and other goods and services should be included and quantified. In this sense, the present study analyzes to what extent semi-arid forest management for water yield results effective and profitable at catchment scale, and how does it improve when it is combined with other benefits such as biomass production and fire risk diminishing. To that end, the effects of forest management of semi-arid Aleppo pine post-fire regeneration stands are analyzed in terms of water yield (TETIS-VEG model), fire risk (KDBY index and FARSITE) and biomass production, at catchment scale. Regarding to water yield, the results confirmed the slight effect of forest management on its increase (average increase of 0.27 ± 0.29 mm yr-1), at the same time that highlighted the role of the upper catchment area as an important water contributor. The management produced 4161.6 Mg of biomass, and decreased in 27±17% and 25.6 ± 14.1% the fire risk and fire propagation, respectively. Finally, a simple economic estimation of the management profitability is carried out by means of comparing the Benefit/Cost ratio of the managed and unmanaged scenarios. Both scenarios were always above the unity when just considering water as benefit, although the unmanaged scenario produced a higher ratio, as no management costs are expended. Contrarily, when wildfire was also included into the evaluation, the situation is overturned for wildfires equal or higher than 1.5 day duration, where the forest management is shown as the most convenient alternative.

Keywords

INGENIERIA HIDRAULICA, Water scarcity, Forest management, Water, EDAFOLOGIA Y QUIMICA AGRICOLA, Forests, Hydrological modeling, Forest ecosystem services, Fires, Wild fire risk, Feasibility Studies, Profitability, Biomass, TECNOLOGIA DEL MEDIO AMBIENTE

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 52
    download downloads 346
  • 52
    views
    346
    downloads
    Data sourceViewsDownloads
    RiuNet52346
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
13
Top 10%
Average
Top 10%
52
346
Green
hybrid