
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of transport of fine and ultrafine particles from open biomass burning on air quality during 2019 Bangkok haze episode

pmid: 32933730
Impact of transport of fine and ultrafine particles from open biomass burning on air quality during 2019 Bangkok haze episode
Transboundary and domestic aerosol transport during 2018-2019 affecting Bangkok air quality has been investigated. Physicochemical characteristics of size-segregated ambient particles down to nano-particles collected during 2017 non-haze and 2018-2019 haze periods were analyzed. The average PM2.5 concentrations at KU and KMUTNB sites in Bangkok, Thailand during the haze periods were about 4 times higher than in non-haze periods. The highest average organic carbon and elemental carbon concentrations were 4.6 ± 2.1 µg/m3 and 1.0 ± 0.4 µg/m3, respectively, in PM0.5-1.0 range at KU site. The values of OC/EC and char-EC/soot-EC ratios in accumulation mode particles suggested the significant influence of biomass burning, while the nuclei and coarse mode particles were from mixed sources. PAH concentrations during 2018-2019 haze period at KU and KMUTNB were 3.4 ± 0.9 ng/m3 and 1.8 ± 0.2 ng/m3, respectively. The PAH diagnostic ratio of PM2.5 also suggested the main contributions were from biomass combustion. This is supported by the 48-hrs backward trajectory simulation. The higher PM2.5 concentrations during 2018-2019 haze period are also associated with the meteorological conditions that induce thermal inversions and weak winds in the morning and evening. Average values of benzo(a)pyrene toxic equivalency quotient during haze period were about 3-6 times higher than during non-haze period. This should raise a concern of potential human health risk in Bangkok and vicinity exposing to fine and ultrafine particulate matters in addition to regular exposure to traffic emission.
- Prince of Songkla University Thailand
- Kasetsart University Thailand
- King Mongkut's University of Technology North Bangkok Thailand
- Prince of Songkla University Thailand
- Kasetsart University Thailand
Aerosols, Air Pollutants, Thailand, Carbon, Air Pollution, Humans, Particulate Matter, Biomass, Seasons, Particle Size, Environmental Monitoring
Aerosols, Air Pollutants, Thailand, Carbon, Air Pollution, Humans, Particulate Matter, Biomass, Seasons, Particle Size, Environmental Monitoring
2 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
