Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Hydrologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Hydrology
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparing the Penman–Monteith equation and a modified Jarvis–Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance

Authors: Whitley, Rhys; Medlyn, Belinda E. (R18040); Zeppel, Melanie J.; Macinnis-Ng, Catriona; Eamus, Derek;

Comparing the Penman–Monteith equation and a modified Jarvis–Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance

Abstract

SUMMARY The responses of canopy conductance to variation in solar radiation, vapour pressure deficit and soil moisture have been extensively modelled using a Jarvis–Stewart (JS) model. Modelled canopy conductance has then often been used to predict transpiration using the Penman–Monteith (PM) model. We previously suggested an alternative approach in which the JS model is modified to directly estimate transpiration rather than canopy conductance. In the present study we used this alternative approach to model tree water fluxes from an Australian native forest over an annual cycle. For comparative purposes we also modelled canopy conductance and estimated transpiration via the PM model. Finally we applied an artificial neural network as a statistical benchmark to compare the performance of both models. Both the PM and modified JS models were parameterised using solar radiation, vapour pressure deficit and soil moisture as inputs with results that compare well with previous studies. Both models performed comparably well during the summer period. However, during winter the PM model was found to fail during periods of high rates of transpiration. In contrast, the modified JS model was able to replicate observed sapflow measurements throughout the year although it too tended to underestimate rates of transpiration in winter under conditions of high rates of transpiration. Both approaches to modelling transpiration gave good agreement with hourly, daily and total sums of sapflow measurements with the modified JS and PM models explaining 87% and 86% of the variance, respectively. We conclude that these three approaches have merit at different time-scales.

Keywords

550, solar radiation, neural networks (computer science), transpiration, stomatal conductance, XXXXXX - Unknown, forest canopies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 10%
Top 10%
bronze