Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Environmental...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Marine Environmental Research
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Community dynamics and ecological shifts on Mediterranean vermetid reefs

Authors: Gil Rilov; Tamar Guy-Haim; Erez Yeruham; Erez Yeruham; Ohad Peleg; Ohad Peleg;

Community dynamics and ecological shifts on Mediterranean vermetid reefs

Abstract

Mediterranean coastal ecosystems experience many local and global stressors and require long-term monitoring to detect and follow trends in community structure. Between 2009 and 2017, we seasonally and annually monitored the spatiotemporal community dynamics at 11 sites on the rocky shores of the southeastern Mediterranean, focusing on the understudied intertidal vermetid reef ecosystem. Marked seasonal trends were found in biodiversity, with the highest diversity in winter and spring. Canopy-forming brown algae, dominating the northwestern Mediterranean intertidal reefs, were generally scarce on the reef platform and almost only found in tidepools. Interannual shifts in community structure were driven mostly by sharp fluctuations in a few dominant native and alien species and the regional mass mortality of an Indo-Pacific mussel in summer 2016. Compared to an older macroalgae dataset, dating back to 1973-1995, we found that some warm-affinity (summer) taxa became more dominant and cold-affinity (winter) species less dominant, while one once conspicuous species, Halimeda tuna, completely disappeared. The observed community shifts are probably driven mostly by stressors related to climate change. We encourage forming a network of long-term, multi-site ecological monitoring programs in the Mediterranean to improve our understanding of ecosystem change and to enable making better predictions at the basin scale.

Keywords

Coral Reefs, Climate Change, Biodiversity, Seaweed, Mediterranean Sea, Seasons, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%