Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Environmental...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Marine Environmental Research
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Responses to simultaneous anthropogenic and biological stressors were mixed in an experimental saltmarsh ecosystem

Authors: Rachael E. Blake; Jill A. Olin;

Responses to simultaneous anthropogenic and biological stressors were mixed in an experimental saltmarsh ecosystem

Abstract

Coastal ecosystems are essential for absorbing and bouncing back from the impacts of climate change, yet accelerating climate change is causing anthropogenically-derived stressors in these ecosystems to grow. The effects of stressors are more difficult to foresee when they act simultaneously, however, predicting these effects is critical for understanding ecological change. Spartina alterniflora (Spartina), a foundational saltmarsh plant key to coastal resilience, is subject to biological stress such as herbivory, as well as anthropogenic stress such as chemical pollution. Using saltmarsh mesocosms as a model system in a fully factorial experiment, we tested whether the effects of herbivory and two chemicals (oil and dispersant) were mediated or magnified in combination. Spartina responded to stressors asynchronously; ecophysiology responded negatively to oil and herbivores in the first 2-3 weeks of the experiment, whereas biomass responded negatively to oil and herbivores cumulatively throughout the experiment. We generally found mixed multi-stressor effects, with slightly more antagonistic effects compared to either synergistic or additive effects, despite significant reductions in Spartina biomass and growth from both chemical and herbivore treatments. We also observed an indirect positive effect of oil on Spartina, via a direct negative effect on insect herbivores. Our findings suggest that multi-stressor effects in our model system, 1) are mixed but can be antagonistic more often than expected, a finding contrary to previous assumptions of primarily synergistic effects, 2) can vary in duration, 3) can be difficult to discern a priori, and 4) can lead to ecological surprises through indirect effects with implications for coastal resilience. This leads us to conclude that understanding the simultaneous effects of multiple stressors is critical for predicting foundation-species persistence, discerning ecosystem resilience, and managing and mitigating impacts on ecosystem services.

Keywords

Climate Change, Poaceae, Biomass, Herbivory, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%