
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Climate change, scenarios and marine biodiversity conservation

This paper explores the utility of qualitative scenario approaches to examine the potential impacts of climate change on marine biodiversity conservation on the east coast of Australia. This region is large and diverse, with considerable variation in marine biodiversity and, concomitantly, considerable diversity in the likely impacts from climate change. The results reinforce a number of key points. Engaging with stakeholders in scenario planning provides not only a focus to discuss the future in a disciplined way, but also provides ongoing reference points for contemporary decision making and planning. The paper illustrates how qualitative scenario planning provides opportunities to address the challenges of marine biodiversity conservation in a changing environment.
- University of Queensland Australia
- University of Queensland Australia
- University of Queensland Australia
- University of Tasmania/Institute for Marine and Antarctic Studies Australia
- University of Tasmania Australia
2300 Environmental Science, 1104 Aquatic Science, Monitoring, Policy and Law, 2002 Economics and Econometrics, 3308 Law, 333, Scenarios, 2308 Management, Climate change, Marine biodiversity
2300 Environmental Science, 1104 Aquatic Science, Monitoring, Policy and Law, 2002 Economics and Econometrics, 3308 Law, 333, Scenarios, 2308 Management, Climate change, Marine biodiversity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
