Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Marine Pollution Bulletin
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Digital.CSIC
Article . 2018
Data sources: Digital.CSIC
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Carbon economy of Mediterranean seagrasses in response to thermal stress

Authors: L. Marín-Guirao; J. Bernardeau-Esteller; R. García-Muñoz; A. Ramos; Y. Ontoria; J. Romero; M. Pérez; +2 Authors

Carbon economy of Mediterranean seagrasses in response to thermal stress

Abstract

Increased plant mortality in temperate seagrass populations has been recently observed after summer heatwaves, although the underlying causes of plant death are yet unknown. The potential energetic constrains resulting from anomalous thermal events could be the reason that triggered seagrass mortality, as demonstrated for benthic invertebrates. To test this hypothesis, the carbon balance of Posidonia oceanica and Cymodocea nodosa plants from contrasting thermal environments was investigated during a simulated heatwave, by analyzing their photosynthetic performance, carbon balance (ratio photosynthesis:respiration), carbohydrates content, growth and mortality. Both species were able to overcome and recover from the thermal stress produced by the six-week exposure to temperatures 4 °C above mean summer levels, albeit plants from cold waters were more sensitive to warming than plants from warm waters as reflected by their inability to maintain their P:R ratio unaltered. The strategies through which plants tend to preserve their energetic status varied depending on the biology of the species and the thermal origin of plants. These included respiratory homeostasis (P. oceanica warm-plants), carbon diversion from growth to respiration (C. nodosa cold-plants) or storage (P. oceanica warm-plants) and changes in biomass allocation (C. nodosa warm-plants). Findings suggest an important geographic heterogeneity in the overall response of Mediterranean seagrasses to warming with potential negative impacts on the functions and services offered by seagrass meadows including among others their capacity for carbon sequestration and carbon export to adjacent ecosystems.

Country
Spain
Keywords

Aquatic Organisms, Carbohydrates, Carbon budget, Plant fitness, Mediterranean Sea, Centro Oceanográfico de Murcia, Biomass, Photosynthesis, Ecosystem, Cymodocea nodosa, Alismatales, Global warming, Temperature, Posidonia oceanica, Photosystem II Protein Complex, Carbon, Carbohydrate Metabolism, Seasons

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 12
    download downloads 27
  • 12
    views
    27
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC1227
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
55
Top 1%
Top 10%
Top 10%
12
27
Green
bronze