Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mutation Research/Ge...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mutation Research/Genetic Toxicology and Environmental Mutagenesis
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Protection of resveratrol and its analogues against ethanol-induced oxidative DNA damage in human peripheral lymphocytes

Authors: Chunfu Wu; Yanhua Mou; Yu Yan; Jingyu Yang; Ya-Nan Zhao; Guoliang Chen; Xinwei Liu; +2 Authors

Protection of resveratrol and its analogues against ethanol-induced oxidative DNA damage in human peripheral lymphocytes

Abstract

Diseases related to ethanol abuse, especially binge drinking, are becoming one of the most costly health problems in the world. Ethanol-induced DNA damage plays a key role in the etiology of these diseases. New compounds are expected to offer new options against ethanol-induced genotoxicity. It was found, for the first time, that resveratrol and three analogues with 3,5-dimethoxyl groups in the A-ring, such as (E)-4-(3,5-dimethoxystyryl)phenol (RV32), or with a quinolyl in the B-ring, such as (E)-5-[2-(quinolin-4-yl)vinyl]benzene-1,3-diol (RV01) and (E)-4-(3,5-dimethoxystyryl)quinoline (RV02), strongly inhibited ethanol-induced oxidative DNA damage in human peripheral lymphocytes in vitro. Resveratrol and RV32 with more hydroxyl groups in structures showed stronger direct scavenging activity of hydroxyl radicals than RV01 and RV02. Moreover, all compounds reduced hydroxyl radical generation by regulating the mRNA expression of alcohol dehydrogenase 1B and acetaldehyde dehydrogenase 2. Further studies proved resveratrol and three analogues activated the base excision repair system in transcriptional and protein levels in DNA repair process. Both 3,5-dimethoxyl groups and quinolyl modification may enhance such activity. In summary, resveratrol and its three analogues revealed significant protective activity against ethanol-induced oxidative DNA damage in human peripheral lymphocytes, which demonstrates their potential for use in prevention and treatment of the diseases related to ethanol abuse.

Related Organizations
Keywords

Male, DNA Repair, Ethanol, Cell Survival, Hydroxyl Radical, Antioxidants, Resveratrol, Stilbenes, Humans, Female, Lymphocytes, Oxidation-Reduction, Cells, Cultured, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Related to Research communities
Energy Research