Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ethanol self-administration and nicotine treatment induce brain levels of CYP2B6 and CYP2E1 in African green monkeys

Authors: Charmaine S. Ferguson; Rachel F. Tyndale; Rachel F. Tyndale; Roberta M. Palmour; Roberta M. Palmour; Sharon Miksys; Sharon Miksys;

Ethanol self-administration and nicotine treatment induce brain levels of CYP2B6 and CYP2E1 in African green monkeys

Abstract

CYP2B6 and CYP2E1 are enzymes responsible for the metabolism of many centrally acting drugs, toxins and endogenous compounds. Human smokers and alcoholics have elevated levels of CYP2B6 and CYP2E1 in certain brain regions, which may contribute to altered drug efficacy, neurotoxicity and metabolic tolerance. The objective of this study was to determine the effects of ethanol self-administration and nicotine treatment, alone and in combination, on brain CYP2B6 and CYP2E1 levels in monkeys. Monkeys were randomized into four groups (N = 10/group): an ethanol-only group, a nicotine-only group, an ethanol + nicotine group and a control (no drug) group. Ethanol (10% alcohol in sucrose solution) was voluntarily self-administered by the monkeys and nicotine was given as subcutaneous injections (0.5 mg/kg bid). Immunocytochemistry revealed induction of both CYP2B6 and CYP2E1 protein in certain brain regions and cells within monkey brain as a result of ethanol self-administration, nicotine treatment and combined exposure to both drugs. Immunoblotting analyses demonstrated CYP2B6 induction by ethanol in the caudate, putamen and cerebellum (1.5-3.2 fold, P < 0.05), and CYP2E1 induction by nicotine in the frontal cortex and putamen (1.6-2.0 fold, P < 0.05). Combined ethanol and nicotine exposure induced CYP2B6 in the caudate, putamen, thalamus and cerebellum (1.4-2.4 fold, P < 0.05), and CYP2E1 in the frontal cortex and putamen (1.5-1.8, P < 0.05). CYP2B6 and CYP2E1 mRNA levels were unaffected by ethanol or nicotine exposure. In summary, ethanol and nicotine can induce CYP2B6 and CYP2E1 protein in the primate brain, which could potentially result in altered sensitivity to centrally acting drugs and toxins.

Keywords

Male, Analysis of Variance, Nicotine, Ethanol, Brain, Central Nervous System Depressants, Cytochrome P-450 CYP2E1, Self Administration, Cytochrome P-450 CYP2B6, Drug Combinations, Chlorocebus aethiops, Animals, Aryl Hydrocarbon Hydroxylases, Nicotinic Agonists, RNA, Messenger, Transcriptome

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%