
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Oxidative stress inhibition by resveratrol in alcohol-dependent mice

pmid: 32569950
handle: 20.500.14243/425896 , 11573/1399374 , 2067/45061
Uncontrolled ingestion of alcohol has dramatic consequences on the entire organism that are also associated with the oxidation process induced by alcohol and elevate radical oxygen species. Resveratrol, a nonflavonoid phenol, shows well-documented antioxidant properties. We investigated the potential antioxidant ability of this natural compound in a mouse model of alcohol addiction.We administered (per os) for 60 d 10 mg · kg-1 · d-1 of resveratrol in alcoholic adult male mice. Oxidative stress was evaluated by measuring serum-free oxygen radicals defense and free oxygen radical levels. Resveratrol metabolites were measured in the serum of mice that were administered with resveratrol. Finally, the effect of resveratrol on the alcohol-induced alteration of brain-derived neurotrophic factors (BDNF) in the liver was investigated.Prolonged consumption of resveratrol strongly counteracts serum radical oxygen species formation caused by chronic alcohol intake without effects on natural, free oxygen radical defense. The presence of resveratrol metabolites in the serum only of animals supplemented with resveratrol potentiates the evidence that the antioxidant effect observed is due to the ingestion of the natural compound. Moreover, resveratrol supplementation can counteract alcohol-induced BDNF elevation in the liver, which is the main target of organ alcohol-induced damage.The consumption of resveratrol through metabolite formation may play a protective role by decreasing free radical formation and modulating the BDNF involved in hepatic disruption induced by chronic alcohol consumption. Further investigation into the mechanism underlying the protective effect could reinforce the potential use of resveratrol as a dietary supplement to prevent damage associated with chronic alcohol abuse.
- Sapienza University of Rome Italy
- Roma Tre University Italy
- Canadian Real Estate Association Canada
- National Research Council Italy
- Canadian Real Estate Association Canada
Male, Ethanol, resveratrol, Antioxidants, Alcoholism, Mice, Oxidative Stress, Resveratrol, Stilbenes, Animals, Addiction Alcohol use disorders Antioxidant polyphenols Resveratrol BDNF
Male, Ethanol, resveratrol, Antioxidants, Alcoholism, Mice, Oxidative Stress, Resveratrol, Stilbenes, Animals, Addiction Alcohol use disorders Antioxidant polyphenols Resveratrol BDNF
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
