Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Sciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Science
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress

Authors: Hesham F. Oraby; Rashid Ahmad;

Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress

Abstract

Salinity is a major abiotic constraint affecting oat productivity. Several physiological and biochemical traits have been found to be related to yield maintenance under salinity. The impact of introducing the Arabidopsis CBF3 gene controlled by the rd29A stress-inducible promoter in T(2) transgenic oat on salinity tolerance and associated physiological changes were studied. Compared with the non-transgenic control, transgenic T(2) plants exhibited greater growth and showed significant maintenance of leaf area, relative water content, chlorophyll content, photosynthetic and transpiration rates as well as increased levels of proline and soluble sugars under high salt stress. These physiological changes delayed leaf-wilting symptoms, increased tolerance and reduced yield loss. At a salinity stress level of 100mM, the CBF3-overexpressing transgenic oat showed a yield loss of 4-11% compared with >56% for the non-transgenic control. These results demonstrate that stress-inducible over-expression of CBF3 may have the potential to enhance abiotic stress tolerance in oat.

Keywords

Salinity, Avena, Arabidopsis, Gene Expression, Sodium Chloride, Plant Roots, Gene Expression Regulation, Plant, Stress, Physiological, Biomass, Photosynthesis, Promoter Regions, Genetic, Plant Proteins, Arabidopsis Proteins, Plant Transpiration, Plants, Genetically Modified, Droughts, Plant Leaves, Seedlings, Plant Shoots, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research