
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Commentary: Why don’t plant leaves get fat?

pmid: 23602107
Recent pressures to obtain energy from plant biomass have encouraged new metabolic engineering strategies that focus on accumulating lipids in vegetative tissues at the expense of lignin, cellulose and/or carbohydrates. There are at least three important factors that support this rationale. (i) Lipids are more reduced than carbohydrates and so they have more energy per unit of mass. (ii) Lipids are hydrophobic and thus take up less volume than hydrated carbohydrates on a mass basis for storage in tissues. (iii) Lipids are more easily extracted and converted into useable biofuels than cellulosic-derived fuels, which require extensive fractionation, degradation of lignocellulose and fermentation of plant tissues. However, while vegetative organs such as leaves are the majority of harvestable biomass and would be ideal for accumulation of lipids, they have evolved as "source" tissues that are highly specialized for carbohydrate synthesis and export and do not have a propensity to accumulate lipid. Metabolism in leaves is directed mostly toward the synthesis and export of sucrose, and engineering strategies have been devised to divert the flow of photosynthetic carbon from sucrose, starch, lignocellulose, etc. toward the accumulation of triacylglycerols in non-seed, vegetative tissues for bioenergy applications.
- University of North Texas United States
- Agricultural Research Service United States
- United States Department of the Interior United States
- University of North Texas United States
- Agricultural Research Service United States
Plant Leaves, Carbohydrate Metabolism, Biomass, Plants, Lipid Metabolism, Lipids
Plant Leaves, Carbohydrate Metabolism, Biomass, Plants, Lipid Metabolism, Lipids
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).105 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
