
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: The model

This paper presents an original size-structured mathematical model of the energy flow through marine ecosystems, based on established ecological and physiological processes and mass conservation principles. The model is based on a nonlocal partial differential equation which represents the transfer of energy in both time and body weight (size) in marine ecosystems. The processes taken into account include size-based opportunistic trophic interactions, competition for food, allocation of energy between growth and reproduction, somatic and maturity maintenance, predatory and starvation mortality. All the physiological rates are temperature-dependent. The physiological bases of the model are derived from the dynamic energy budget theory. The model outputs the dynamic size-spectrum of marine ecosystems in term of energy content per weight class as well as many other size-dependent diagnostic variables such as growth rate, egg production or predation mortality. In stable environmental conditions and using a reference set of parameters derived from empirical studies, the model converges toward a stationary linear log–log size-spectrum with a slope equal to � 1.06, which is consistent with the values reported in empirical studies. In some cases, the distribution of the largest sizes departs from the stationary linear solution and is slightly curved downward. A sensitivity analysis to the parameters is conducted systematically. It shows that the stationary size-spectrum is not very sensitive to the parameters of the model. Numerical simulations of the effects of temperature and primary production variability on marine ecosystems size-spectra are provided in a companion paper [Maury, O., Shin, Y.-J., Faugeras, B., Ben Ari, T., Marsac, F., 2007. Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 2: simulations. Progress in Oceanography, doi:10.1016/j.pocean.2007.05.001]. � 2007 Elsevier Ltd. All rights reserved.
570, size spectrum, energy flow, Bioenergetics, [SDV] Life Sciences [q-bio], dynamic energy budget DEB theory, predation, mathematical model
570, size spectrum, energy flow, Bioenergetics, [SDV] Life Sciences [q-bio], dynamic energy budget DEB theory, predation, mathematical model
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).113 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
