Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horizon / Pleins tex...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Horizon / Pleins textes
Other literature type . 2007
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress In Oceanography
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL AMU
Article . 2007
Data sources: HAL AMU
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: The model

Authors: Maury, Olivier; Faugeras, Blaise; Shin, Yunne Jai; Poggiale, Jean-Christophe; Ben-Ari, Tamara; Marsac, Francis;

Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: The model

Abstract

This paper presents an original size-structured mathematical model of the energy flow through marine ecosystems, based on established ecological and physiological processes and mass conservation principles. The model is based on a nonlocal partial differential equation which represents the transfer of energy in both time and body weight (size) in marine ecosystems. The processes taken into account include size-based opportunistic trophic interactions, competition for food, allocation of energy between growth and reproduction, somatic and maturity maintenance, predatory and starvation mortality. All the physiological rates are temperature-dependent. The physiological bases of the model are derived from the dynamic energy budget theory. The model outputs the dynamic size-spectrum of marine ecosystems in term of energy content per weight class as well as many other size-dependent diagnostic variables such as growth rate, egg production or predation mortality. In stable environmental conditions and using a reference set of parameters derived from empirical studies, the model converges toward a stationary linear log–log size-spectrum with a slope equal to � 1.06, which is consistent with the values reported in empirical studies. In some cases, the distribution of the largest sizes departs from the stationary linear solution and is slightly curved downward. A sensitivity analysis to the parameters is conducted systematically. It shows that the stationary size-spectrum is not very sensitive to the parameters of the model. Numerical simulations of the effects of temperature and primary production variability on marine ecosystems size-spectra are provided in a companion paper [Maury, O., Shin, Y.-J., Faugeras, B., Ben Ari, T., Marsac, F., 2007. Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 2: simulations. Progress in Oceanography, doi:10.1016/j.pocean.2007.05.001]. � 2007 Elsevier Ltd. All rights reserved.

Country
France
Keywords

570, size spectrum, energy flow, Bioenergetics, [SDV] Life Sciences [q-bio], dynamic energy budget DEB theory, predation, mathematical model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 10%
Top 10%
Top 10%
Green