Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Lancaster EPrintsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions

Authors: Junzhi Liu; Zhangcong Liu; A-Xing Zhu; Fang Shen; Qiuliang Lei; Zheng Duan;

Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions

Abstract

This study conducted the global sensitivity analysis of the APSIM-Oryza rice growth model under eight climate conditions and two CO2 levels using the extended Fourier Amplitude Sensitivity Test method. Two output variables (i.e. total aboveground dry matter WAGT and dry weight of storage organs WSO) and twenty parameters were analyzed. The ±30% and ±50% perturbations of base values were used as the ranges of parameter variation, and local fertilization and irrigation managements were considered. Results showed that the influential parameters were the same under different environmental conditions, but their orders were often different. Climate conditions had obvious influence on the sensitivity index of several parameters (e.g. RGRLMX, WGRMX and SPGF). In particular, the sensitivity index of RGRLMX was larger under cold climate than under warm climate. Differences also exist for parameter sensitivity of early and late rice in the same site. The CO2 concentration did not have much influence on the results of sensitivity analysis. The range of parameter variation affected the stability of sensitivity analysis results, but the main conclusions were consistent between the results obtained from the ±30% perturbation and those obtained the ±50% perturbation in this study. Compared with existing studies, our study performed the sensitivity analysis of APSIM-Oryza under more environmental conditions, thereby providing more comprehensive insights into the model and its parameters.

Country
United Kingdom
Keywords

Crops, Agricultural, 570, 550, Climate, Climate Change, Oryza, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
Green
bronze