Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

From typical silicon-rich biomass to porous carbon-zeolite composite: A sustainable approach for efficient adsorption of CO2

Authors: Xia Jiang; Zhongde Dai; Fengli Gan; Tongxiao Zhou; Bangda Wang; Ziheng Jin; Lingling Xie;

From typical silicon-rich biomass to porous carbon-zeolite composite: A sustainable approach for efficient adsorption of CO2

Abstract

Focusing on the high-valued utilization of the widespread silicon-rich waste biomass, a sustainable route by simultaneous utilization of carbon and silicon from silicon-rich rice husk was proposed in this work. Specifically, porous carbon-zeolite composite with hierarchical porous structure of micro/meso pores (carbon) and ultra-microporous pores (Na-X zeolite) was in situ prepared by a facile one-pot method. The obtained porous carbon-zeolite composite (PC2-Z) had a higher yield of 67.66% compared to the porous carbon without silicon (PC2) of 43.33%. Moreover, due to the high ultra-micropore volume of the PC2-Z sample (up to 0.181 cm3/g), it exhibited high dynamic CO2 adsorption capacity of 1.81 mmol/g and CO2/N2 selectivity of 9.80 (1 bar), which were higher than 1.67 mmol/g and 7.01 (1 bar) for PC2, respectively. PC2-Z also showed good regeneration efficiency above 99% after ten cycles. Furthermore, the economic and energy consumption assessment of this utilization route was conducted. Overall, a facile one-pot route was developed to prepare highly efficient composite absorbents from silicon-rich biomass, which can be widely used in different environmental applications.

Related Organizations
Keywords

Silicon, Zeolites, Adsorption, Biomass, Carbon Dioxide, Porosity, Carbon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Average
Top 10%
bronze