
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
From typical silicon-rich biomass to porous carbon-zeolite composite: A sustainable approach for efficient adsorption of CO2

pmid: 33454468
Focusing on the high-valued utilization of the widespread silicon-rich waste biomass, a sustainable route by simultaneous utilization of carbon and silicon from silicon-rich rice husk was proposed in this work. Specifically, porous carbon-zeolite composite with hierarchical porous structure of micro/meso pores (carbon) and ultra-microporous pores (Na-X zeolite) was in situ prepared by a facile one-pot method. The obtained porous carbon-zeolite composite (PC2-Z) had a higher yield of 67.66% compared to the porous carbon without silicon (PC2) of 43.33%. Moreover, due to the high ultra-micropore volume of the PC2-Z sample (up to 0.181 cm3/g), it exhibited high dynamic CO2 adsorption capacity of 1.81 mmol/g and CO2/N2 selectivity of 9.80 (1 bar), which were higher than 1.67 mmol/g and 7.01 (1 bar) for PC2, respectively. PC2-Z also showed good regeneration efficiency above 99% after ten cycles. Furthermore, the economic and energy consumption assessment of this utilization route was conducted. Overall, a facile one-pot route was developed to prepare highly efficient composite absorbents from silicon-rich biomass, which can be widely used in different environmental applications.
- Sichuan University China (People's Republic of)
- Sichuan University China (People's Republic of)
Silicon, Zeolites, Adsorption, Biomass, Carbon Dioxide, Porosity, Carbon
Silicon, Zeolites, Adsorption, Biomass, Carbon Dioxide, Porosity, Carbon
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
