Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fluorescence excitation-emission matrix as a novel indicator of assimilable organic carbon in wastewater: Implication from a coal chemical wastewater study

Authors: Kang Xiao; Shu Wang; Xia Huang; Yufang Li;

Fluorescence excitation-emission matrix as a novel indicator of assimilable organic carbon in wastewater: Implication from a coal chemical wastewater study

Abstract

Assimilable organic carbon (AOC) is recognized as an important parameter to evaluate the biostability of water. Studies have been carried out to investigate the easier and faster AOC detection methods in recent years. In our study, the relationship between AOC and excitation-emission matrix (EEM) was investigated through analysis of wastewater from a coal chemical industrial corporation, including biochemical effluent, ultrafiltration effluent, and reverse osmosis concentrate. Considering the influence of water sample properties on AOC distribution, these water samples were fractionated according to their hydrophilicity and acid/base properties. Neutrals and hydrophobic acids were major components of total organic carbon and AOC concentration of these fractions was measured. EEM spectra of water samples were divided into five regions according to fluorescence peaks. Distribution of fluorescence region integration (FRI) of water samples was also calculated, as well as other fluorescence parameters. Statistical analysis showed that the concentration of AOC presented high positive correlation with the FRI in region H2, with R2 = 0.696. Monte Carlo simulation also proved that the proportion of significant R2 (p < 0.05) was high at 89.1%, suggesting that the model was reliable at least at the qualitative level. In that case, FRI in Region H2 could be an indication for AOC concentration in water samples. Our findings focus on fundamental insights into establishing relationship between spectroscopy method and AOC in wastewater and provide an easier way of accessing AOC in coal chemical industrial wastewater. Further investigation could be oriented to the dynamic analysis of AOC transformation and tracing.

Related Organizations
Keywords

Wastewater, Carbon, Water Purification, Coal, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
bronze