
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Anthropogenic pressures enhance the deleterious effects of extreme storms on rocky shore communities

pmid: 34998754
Climate change is not only changing the mean values of environmental parameters that modulate ecosystems, but also the regime of disturbances. Among them, extreme events have a key role in structuring biological communities. Ecosystems are frequently suffering multiple anthropogenic pressures which can cause effects that are not additive. Thus, the effects of extreme events need to be studied in combination with other pressures to adequately evaluate their consequences. We performed a manipulative approach in two rocky shores in the Mediterranean with contrasting levels of anthropogenic pressure (mainly eutrophication) simulating storms with different disturbance regimes in the intertidal and subtidal zones. In the short-term, an extreme storm had a greater impact on the species assemblage than other disturbance regimes, being especially notable in the area suffering from a high anthropogenic pressure. In this area, the species assemblages that suffered from an extreme storm took a longer time to recover than the ones affected by other disturbance regimes and were generally more affected after the disturbance. The intertidal zone, having more variable environmental conditions than the subtidal zone, was more resistant and able to recover from extreme storms. Our results suggest that the effects of extreme events on biological communities could be strengthened when co-occurring with anthropogenic pressures, especially ecosystems adapted to less variable environmental conditions. Thus, limiting other anthropogenic pressures that ecosystems are suffering is crucial to maintain the natural resistance and recovery capacity of ecosystems towards extreme events such as storms.
- University of Alicante Spain
- University of Alicante Spain
Resilience, Anthropogenic Effects, Climate Change, Resistance, Botánica, Extreme events, Ecología, Eutrophication, Climate change, Multiple stressors, Cumulative impacts, Ecosystem
Resilience, Anthropogenic Effects, Climate Change, Resistance, Botánica, Extreme events, Ecología, Eutrophication, Climate change, Multiple stressors, Cumulative impacts, Ecosystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
