Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nitrogen enrichment alters climate sensitivity of biodiversity and productivity differentially and reverses the relationship between them in an alpine meadow

Authors: Jinlong, Peng; Fangfang, Ma; Quan, Quan; Xinli, Chen; Jinsong, Wang; Yingjie, Yan; Qingping, Zhou; +1 Authors

Nitrogen enrichment alters climate sensitivity of biodiversity and productivity differentially and reverses the relationship between them in an alpine meadow

Abstract

Biodiversity and productivity that highly determine ecosystem services are varying largely under global change. However, the climate sensitivity of them and their relationship are not well understood, especially in the context of increasing nitrogen (N) deposition. Here, based on a six-year N manipulation experiment in an alpine meadow, we quantified interannual climate sensitivity of species richness (SR) and above-ground net primary productivity (ANPP) as well as SR-ANPP relationship as affected by six N addition rate (Nrate) gradients. We found that interannual variations in ANPP and SR were mainly driven by temperature instead of precipitation. In the plots without N addition, higher temperature substantially increased ANPP but reduced SR across years, thus resulting in a negative SR-ANPP relationship. However, the negative and positive responses of SR and ANPP to temperature increased and declined significantly with increasing Nrate, respectively, leading to a shift of the negative relationship between SR and ANPP into a positive one under high Nrate. Moreover, the adverse influence of drought on SR and ANPP would be aggravated by N fertilization, as indicated by the increased positive effect of precipitation on them under N enrichment. Our findings indicate that climate sensitivity of productivity and biodiversity may be misestimated if the impact of N deposition is not considered, and the importance of biodiversity to maintain productivity would enhance as N deposition increases. This study provides a new insight to explain variation of biodiversity-productivity relationship along with environmental changes.

Related Organizations
Keywords

Nitrogen, Climate, Climate Change, Rain, Biodiversity, Poaceae, Grassland, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%