
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Non-denitrifying nitrous oxide-reducing bacteria - An effective N2O sink in soil

Non-denitrifying nitrous oxide-reducing bacteria - An effective N2O sink in soil
Abstract Nitrous oxide (N2O) is an important greenhouse gas and fundamental questions about the capacity of soil microbial communities to act not only as sources, but also as sinks for N2O remains unanswered. We evaluated the capacity of non-denitrifying N2O-reducers to mitigate the production of this greenhouse gas in soil. We showed experimentally that the addition of the non-denitrifying strain Dyadobacter fermentans, which possesses the previously unaccounted N2O reductase NosZII, to 11 different soils significantly reduced N2O production of up to 189% in more than 1/3 of the soils. The magnitude of this effect was significantly influenced by the soil pH and C/N ratio. Overall, our results provide unambiguous evidence that the overlooked non-denitrifying NosZII-type bacteria can contribute to N2O consumption in soil.
550, [ SDV ] Life Sciences [q-bio], Mitigation, Nitrogen, [SDV]Life Sciences [q-bio], Greenhouse gas, [SDV] Life Sciences [q-bio], nosZ, Microbial community, Denitrification
550, [ SDV ] Life Sciences [q-bio], Mitigation, Nitrogen, [SDV]Life Sciences [q-bio], Greenhouse gas, [SDV] Life Sciences [q-bio], nosZ, Microbial community, Denitrification
3 Research products, page 1 of 1
- 2016IsAmongTopNSimilarDocuments
- 1993IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).112 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
