
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of co-sensitization of CdSe nanoparticles with N3 dye on TiO2 nanotubes

Abstract Cadmium selenide (CdSe) nanoparticles were synthesized in aqueous medium using mercaptopropionic acid (MPA) as the stabilizer at the temperature 100 °C. Air stable sodium selenite (Na2SeO3) was used as the selenium source. The synthesized particles were used to co-sensitize the TiO2 nanotubes with N3 dye. Ex-situ linker assisted method was used to sensitize the nanotubes by CdSe nanoparticles. Electrochemical anodization technique was employed to prepare TiO2 nanotubes in the presence of hydrogen fluoride (HF) as electrolyte. A solar cell was fabricated using co-sensitized TiO2 nanotubes by N3 dye/CdSe nanoparticles as the anode and platinum coated fluorine doped tin oxide (FTO) electrode as the cathode. Polysulphide ( S 2 - / S x 2 - ) mixture was used as the electrolyte. UV–Visible, SEM, AFM and TEM analysis were used to characterize the synthesized particles and TiO2 nanotubes.
- Anna University, Chennai India
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
