
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data

handle: 10138/235285
Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data
This study examines the progress made by two new reanalyses in the estimation of surface irradiance: ERA5, the new global reanalysis from the ECMWF, and COSMO-REA6, the regional reanalysis from the DWD for Europe. Daily global horizontal irradiance data were evaluated with 41 BSRN stations worldwide, 294 stations in Europe, and two satellite-derived products (NSRDB and SARAH). ERA5 achieves a moderate positive bias worldwide and in Europe of +4.05 W/m2 and +4.54 W/m2 respectively, which entails a reduction in the average bias ranging from 50% to 75% compared to ERA-Interim and MERRA-2. This makes ERA5 comparable with satellite-derived products in terms of the mean bias in most inland stations, but ERA5 results degrade in coastal areas and mountains. The bias of ERA5 varies with the cloudiness, overestimating under cloudy conditions and slightly underestimating under clear-skies, which suggests a poor prediction of cloud patterns and leads to larger absolute errors than that of satellite-based products. In Europe, the regional COSMO-REA6 underestimates in most stations (MBE = 5.29 W/m2) showing the largest deviations under clear-sky conditions, which is most likely caused by the aerosol climatology used. Above 45°N the magnitude of the bias and absolute error of COSMO-REA6 are similar to ERA5 while it outperforms ERA5 in the coastal areas due to its high-resolution grid (6.2 km). We conclude that ERA5 and COSMO-REA6 have reduced the gap between reanalysis and satellite-based data, but further development is required in the prediction of clouds while the spatial grid of ERA5 (31 km) remains inadequate for places with high variability of surface irradiance (coasts and mountains). Satellite-based data should be still used when available, but having in mind their limitations, ERA5 is a valid alternative for situations in which satellite-based data are missing (polar regions and gaps in times series) while COSMO-REA6 complements ERA5 in Central and Northern Europe mitigating the limitations of ERA5 in coastal areas. © 2018 The Author(s)
- University of Helsinki Finland
- University of Zurich Switzerland
- German Meteorological Service Germany
- Joint Research Centre Italy
- Joint Research Centre Italy
EUROPE, Global horizontal irradiance, CIRCULATION, INTERIM REANALYSIS, MERRA, Reanalysis products, VALIDATION, PRODUCTS, VARIABILITY, Solar radiation, Satellite-based products, SURFACE SOLAR-RADIATION, Geosciences
EUROPE, Global horizontal irradiance, CIRCULATION, INTERIM REANALYSIS, MERRA, Reanalysis products, VALIDATION, PRODUCTS, VARIABILITY, Solar radiation, Satellite-based products, SURFACE SOLAR-RADIATION, Geosciences
11 Research products, page 1 of 2
- 2020IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).290 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
