Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Incorporation of organic additives with electron rich donors (N, O, S) in gelatin gel polymer electrolyte for dye sensitized solar cells

Authors: J.M. Abisharani; S. Balamurugan; A. Thomas; S. Devikala; M. Arthanareeswari; S. Ganesan; M. Prakash;

Incorporation of organic additives with electron rich donors (N, O, S) in gelatin gel polymer electrolyte for dye sensitized solar cells

Abstract

Abstract A new sequence of GLN gel polymer electrolytes incorporated with KI/I2 redox pair and inexpensive organic additives were prepared. Five dissimilar N, O, and S containing organic compounds were used as additives for the application of DSSCs. The assimilation of organic additives into the GLN gel polymer electrolytes is confirmed by FTIR, DSC, XRD, UV–visible and SEM analyses. EIS analysis reveals that there is an increment in the conductivity up to 2.93X10-5 S/cm for SAA organic additive integrated gel polymer electrolyte than other organic additives. This is owing to more electrons donating nature of the SAA molecule which consists of N, S and O atoms together in its structure. The EIS experiment exposes the interfacial study in DSSCs to elucidate the charge transport mechanisms at the interface of photo electrodes and electrolyte medium of the devices. The charge transfer studies show a lower Rpt (685 Ω), higher Rct (1674 Ω) and Cµ (5.702 X 10-6F) values for SAA integrated GLN gel polymer electrolyte. This confirms mitigation of recombination process between TiO2 and I3- ions and also build a shift to Fermi level of TiO2. DFT calculations also confirm the strength and mode of interaction of individual additives adsorbed on TiO2 surfaces. The FMO analysis clearly reveals that functional groups play a vital role in the charge transfer process at interface materials. The N, O and S present in the SAA additive with GLN gel polymer electrolyte improves the PCE up to 5.8% under the sunlight illumination of 100mWcm−2.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%