
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Inverted ITO- and PEDOT:PSS-free polymer solar cells with high power conversion efficiency

Abstract Highest published power conversion efficiencies of organic solar cells have mostly been achieved on substrates bearing a transparent indium tin oxide (ITO) electrode. However, the incorporation of ITO is not suited for future industrial production processes of organic solar cells, which will rely on a high-throughput of flexible substrates in order to achieve low cost of the final product. In this manuscript we present an alternative transparent electrode consisting of a layer stack of aluminum doped zinc oxide and a thin silver layer. Substrates with these electrodes have a transparency of above 75% in the wavelength range in which the photoactive layer absorbs light. Solar cells with a bulk-heterojunction of PTB7 and PC 71 BM in an inverted device architecture achieved a power conversion efficiency of 6.1%, which is the highest reported value for polymer solar cells free from both ITO and PEDOT:PSS. The sheet resistance of the novel electrodes increased only marginally after repeated bending which shows their full compatibility with future reel-to-reel processes or flexible products.
- University of Freiburg Germany
- Fraunhofer Institute for Solar Energy Systems Germany
- Fraunhofer Society Germany
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
