
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Grasses provide new insights into regulation of shoot branching

pmid: 22858267
Tillering (branching) is a major determinant of crop yield that is controlled by complex interactions between hormonal, developmental, and environmental factors. Historically, research on shoot branching has focused on eudicots, mainly due to the ease of manipulating branching by shoot decapitation and grafting in these species. These studies demonstrated hormonal control of branching. Recent studies in monocots have contributed to our knowledge of tillering/branching by identifying novel branching genes and regulatory mechanisms. A comparison of branching controls in eudicots and monocots reveals that the regulatory signals and genes are broadly conserved, but that there are differences in the detail.
- Commonwealth Scientific and Industrial Research Organisation Australia
- Plant Industry Australia
Models, Genetic, Environment, Poaceae, Gibberellins, Plant Growth Regulators, Species Specificity, Gene Expression Regulation, Plant, Organ Specificity, Mutation, Biomass, Plant Shoots, Plant Proteins, Signal Transduction
Models, Genetic, Environment, Poaceae, Gibberellins, Plant Growth Regulators, Species Specificity, Gene Expression Regulation, Plant, Organ Specificity, Mutation, Biomass, Plant Shoots, Plant Proteins, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).111 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
