Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Virology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Virology
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Virology
Article . 2005
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ethanol potentiates HIV-1 gp120-induced apoptosis in human neurons via both the death receptor and NMDA receptor pathways

Authors: Muhammad Mukhtar; Paolo Fortina; Wei Chen; Roger J. Pomerantz; Pritesh Patel; Zhonghua Tang; Edward Acheampong; +2 Authors

Ethanol potentiates HIV-1 gp120-induced apoptosis in human neurons via both the death receptor and NMDA receptor pathways

Abstract

Neuronal loss is a hallmark of AIDS dementia syndromes. Human immunodeficiency virus type I (HIV-1)-specific proteins may induce neuronal apoptosis, but the signal transduction of HIV-1 gp120-induced, direct neuronal apoptosis remains unclear. Ethanol (EtOH) is considered to be an environmental co-factor in AIDS development. However, whether EtOH abuse in patients with AIDS increases neuronal dysfunction is still uncertain. Using pure, differentiated, and post-mitotic NT2.N-derived human neurons, we investigated the mechanisms of HIV-1 and/or EtOH-related direct neuronal injury and the molecular interactions between HIV-1-specific proteins and EtOH. It was demonstrated that NT2.N neurons were susceptible to HIV-1 Bal (R5-tropic strain) gp120-induced direct cell death. Of importance, EtOH induced cell death in human neurons in a clinically-relevant dose range and EtOH strongly potentiated HIV-1 gp120-induced neuronal injury at low and moderate concentrations. Furthermore, this potentiation of neurotoxicity could be blocked by N-methyl-D-aspartate (NMDA) receptor subunit 2B (NR2B) antagonists. We analyzed human genomic profiles in these human neurons, using Affymetrix genomics technology, to elucidate the apoptotic pathways involved in HIV-1- and EtOH-related neurodegeneration. Our findings indicated significant over-expression of selected apoptosis functional genes. Significant up-regulation of TRAF5 gene expression may play an essential role in triggering potentiation by EtOH of HIV-1 gp120-induced neuronal apoptosis at early stages of interaction. These studies suggested that two primary apoptotic pathways, death receptor (extrinsic) and NMDA receptor (intrinsic)-related programmed cell-death pathways, are both involved in the potentiation by EtOH of HIV-1 gp120-induced direct human neuronal death. Thus, these data suggest rationally-designed, molecular targets for potential anti-HIV-1 neuroprotection.

Keywords

Neurons, TNF Receptor-Associated Factor 5, AIDS Dementia Complex, Ethanol, Gene Expression Profiling, Apoptosis, HIV Envelope Protein gp120, Receptors, N-Methyl-D-Aspartate, Receptors, Tumor Necrosis Factor, gp120, HIV-1, Humans, CNS, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities
Energy Research