Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Research
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diversity and temporal shifts of the bacterial community associated with a toxic cyanobacterial bloom: An interplay between microcystin producers and degraders

Authors: María Ángeles Lezcano; Rehab El-Shehawy; David Velázquez; Antonio Quesada;

Diversity and temporal shifts of the bacterial community associated with a toxic cyanobacterial bloom: An interplay between microcystin producers and degraders

Abstract

The biodegradation of microcystins (MCs) by bacteria constitutes an important process in freshwater ecosystems to prevent the accumulation of toxins. However, little is known about the diversity and the seasonal dynamics of the bacterial community composition (BCC) involved in the degradation of MCs in nature. To explore these BCC shifts, high-throughput sequencing was used to analyse the 16S rRNA, mcyE and mlrA genes during a year in a freshwater reservoir with a toxic cyanobacterial bloom episode. The analysis of the mcyE and mlrA genes from water samples revealed the coexistence of different MC-producing and MC-degrading genotypes, respectively. The patchy temporal distribution of the mlrA genotypes (from the families Sphingomonadaceae and Xanthomonadaceae) suggests their dissimilar response to environmental conditions and the influence of other factors besides the MCs that may control their presence and relative abundance. During the maximum toxic cyanobacterial biomass and cell lysis, other bacterial taxa that lack mlr genes increased their relative abundance. Among these bacteria, those with a recognized role in the degradation of xenobiotic and other complex organic compounds (e.g., orders Myxococcales, Ellin6067, Spirobacillales and Cytophagales) were the most representative and suggest their possible involvement in the removal of MCs in the environment.

Keywords

Xanthomonadaceae, Microcystins, Microbial Consortia, Fresh Water, QR Microbiology, Eutrophication, Cyanobacteria, Sphingomonadaceae, Biodegradation, Environmental, Bacterial Proteins, Spain, RNA, Ribosomal, 16S, Biomass, Seasons, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 1%
Top 10%
Top 10%