Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wageningen Staff Pub...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 1993
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Other literature type . 1993
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Animal Science
Article . 1993 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intake and utilization of energy from ammonia-treated and untreated wheat straw by steers and wether sheep given a basal diet of grass pellets and hay

Authors: Oosting, S.J.; Boekholt, H.A.; Los, M.J.N.; Leffering, C.P.;

Intake and utilization of energy from ammonia-treated and untreated wheat straw by steers and wether sheep given a basal diet of grass pellets and hay

Abstract

AbstractTwo experiments, experiment 1 with six steers in a 3 × 3 Latin-square design and experiment 2 with four wether sheep in a cross-over design, were conducted to study the effect of species and ammonia treatment on intake and utilization of the energy of untreated wheat straw. Treatments were: (1) untreated wheat straw offered ad libitum on top of a basal diet (B) consisting of hay (0·25) and grass pellets (0·75) (UWS), (2) ammoniated wheat straw offered ad libitum plus B (AWS) and (3) ammoniated wheat straw offered at a restricted level plus B (AWS-). B was offered as a maintenance diet for both species and AWS- was only studied in steers. Voluntary intake of AWS zvas higher than that of UWS. No significant differences emerged between whole rations UWS and AWS with regard to energy digestion (ED), energy metabolizability (ρ = metabolizable energy (ME) I gross energy (GE)) and losses of digestible energy (DE) in urine and methane (average 187 J/KJ DE), but the efficiency of utilization of ME for growth (kg) was significantly higher for AWS than for UWS. ED and ρ of the straw part of the ration was significantly higher for AWS than for UWS. AWS- and AWS did not differ significantly with regard to ED, ρ and DE losses in methane and urine. Steers had a higher intake per kg0·75 per day than wether sheep. Across species, digestible energy intake (DEI) of the whole ad libitum fed diets was related to live weight (M)0·946 (s.e. of exponent 0·0152). ED and ρ of the straw part of the rations did not differ significantly between species, but steers had a significantly higher ED and ρ of β than wether sheep. Steers excreted a significantly lower proportion of DE in urine and a significantly higher proportion of DE in methane than did wethers. Total energy losses in urine and methane, however, did not differ between species.

Country
Netherlands
Related Organizations
Keywords

food intake, wheat straw, steers, ammonia treatment, energy consumption, Human and Animal Physiology, Fysiologie van Mens en Dier, Veehouderij, Animal Husbandry, Leerstoelgroep Fysiologie van mens en dier, wethers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Average