

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comparison of measured and modelled uv indices for the assessment of health risks

handle: 20.500.11765/14369
AbstractThe World Health Organisation (WHO) and the World Meteorological Organisation (WMO) have jointly recommended that the UV Index (UVI) should be used to inform the public about possible health risks due to overexposure to solar radiation, especially skin damage. To test the current operational status of measuring and modelling techniques used in providing the public with UVI information, this article compares cloudless sky UVIs (measured using five instruments at four locations with different latitudes and climate) with the results of 13 models used in UVI forecasting schemes. For the models, only location, total ozone and solar zenith angle were provided as input parameters. In many cases the agreement is acceptable, i.e. less than 0.5 UVI. Larger differences may originate from instrumental errors and shortcomings in the models and their input parameters. A possible explanation for the differences between models is the treatment of the unknown input parameters, especially aerosols. Copyright © 2001 Royal Meteorological Society
- Royal Meteorological Institute of Belgium Belgium
- University of Bremen Germany
- Federal Office of Meteorology and Climatology Switzerland
- University of Barcelona Spain
- Agencia Estatal de Meteorología Spain
Health risks, Solar radiation, UV Index, Skin damage
Health risks, Solar radiation, UV Index, Skin damage
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).49 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 469 download downloads 590 - 469views590downloads
Data source Views Downloads Archivo Climatológico y Meteorológico Institucional de AEMET 469 590


