Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CNR ExploRA
Article . 2017
Data sources: CNR ExploRA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2017
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Sustainable Chemistry & Engineering
Article . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular Characterization of Extracts from Biorefinery Wastes and Evaluation of Their Plant Biostimulation

Authors: Davide Savy; Pierluigi Mazzei; Marios Drosos; Vincenza Cozzolino; Licia Lama; Alessandro Piccolo;

Molecular Characterization of Extracts from Biorefinery Wastes and Evaluation of Their Plant Biostimulation

Abstract

Biorefinery residues from non-food biomasses are promising sources of sustainable agrochemicals. The molecular properties of water-soluble extracts from ligno-cellulosic biomass pretreated first by steam-explosion and then by enzymatic hydrolyses at different buffer doses, were assayed for bioactivity on maize. 13C and 31P nuclear magnetic resonance (NMR) spectra showed that extracts varied in phenolic and carboxyl content, while high performance size exclusion chromatography and diffusion ordered spectroscopy NMR revealed that Ox-BYP 1 obtained from wastes treated with a greater buffer dose contained small-sized molecules associated in apparently large metastable aggregates. Ox-BYP 2 separated from wastes treated with smaller buffer concentrations showed a more stable conformation. Both hydrolysates revealed a positive dose-dependent bioactivity toward maize growth. Ox-BYP 1 promoted plant fresh and dry weights and root length at 10 and 100 ppm but decreased seedling growth at 1 ppm. Instead, Ox-BYP 2 increased the whole plant growth at all assayed concentrations. Their different biostimulation effects were attributed to the toxicity of easily bioaccessible lignin-derived phenolics at small concentrations of Ox-BYP 1, which was removed by molecular selfassembly at greater concentrations. Conversely, the more strongly associated Ox-BYP 2 exerted a positive bioactivity even at small doses. The bioactivity of extracts from biorefinery wastes appeared to depend on molecular composition and, in turn, on waste pretreatments.

Country
Italy
Keywords

5, 2-dioxa-phospholane, 3, 4, 1, 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxa-phospholane; 13C-CPMAS NMR; 1H-DOSY NMR; 31P NMR; Biorefinery residues; HPSEC; Humic-like materials; Plant biostimulants; Water-soluble extracts; Chemistry (all); Environmental Chemistry; Chemical Engineering (all); Renewable Energy, Sustainability and the Environment, Biorefinery residues, HPSEC, Humic-like materials, Biorefinery residue, 1H-DOSY NMR, Environmental Chemistry, 31P NMR, Chemical Engineering (all), Renewable Energy, Water-soluble extracts, Humic-like material, C-CPMAS NMR, P NMR, 2-Chloro-4, 31, Sustainability and the Environment, Plant biostimulants, 2-Chloro-4; 4; 5; 5-tetramethyl-1; 3; 2-dioxa-phospholane; 13C-CPMAS NMR; 1H-DOSY NMR; 31P NMR; Biorefinery residues; HPSEC; Humic-like materials; Plant biostimulants; Water-soluble extracts; Chemistry (all); Environmental Chemistry; Chemical Engineering (all); Renewable Energy; Sustainability and the Environment, Chemistry (all), Plant biostimulant, 541, H-DOSY NMR, 13, 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxa-phospholane, 5-tetramethyl-1, 13C-CPMAS NMR

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
Green