Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science & Technology
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Direct and Indirect Effects of Climate Change on the Risk of Infection by Water-Transmitted Pathogens

Authors: Sterk, A; Schijven, J; de Nijs, T; de Roda Husman, AM;

Direct and Indirect Effects of Climate Change on the Risk of Infection by Water-Transmitted Pathogens

Abstract

Climate change is likely to affect the infectious disease burden from exposure to pathogens in water used for drinking and recreation. Effective intervention measures require quantification of impacts of climate change on the distribution of pathogens in the environment and their potential effects on human health. Objectives of this systematic review were to summarize current knowledge available to estimate how climate change may directly and indirectly affect infection risks due to Campylobacter, Cryptosporidium, norovirus, and Vibrio. Secondary objectives were to prioritize natural processes and interactions that are susceptible to climate change and to identify knowledge gaps. Search strategies were determined based on a conceptual model and scenarios with the main emphasis on The Netherlands. The literature search resulted in a large quantity of publications on climate variables affecting pathogen input and behavior in aquatic environments. However, not all processes and pathogens are evenly covered by the literature, and in many cases, the direction of change is still unclear. To make useful predictions of climate change, it is necessary to combine both negative and positive effects. This review provides an overview of the most important effects of climate change on human health and shows the importance of QMRA to quantify the net effects.

Country
Netherlands
Keywords

Geologic Sediments, Climate Change, Water Pollution, Models, Theoretical, Communicable Diseases, SDG 3 - Good Health and Well-being, Risk Factors, SDG 13 - Climate Action, Animals, Humans, Public Health, Water Microbiology, Groundwater, Netherlands

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
Green