Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bern Open Repository...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Advances in Modeling Earth Systems
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ocean Biogeochemistry in GFDL's Earth System Model 4.1 and Its Response to Increasing Atmospheric CO2

Authors: Fabien Paulot; Song-Miao Fan; Charlotte Laufkötter; Charlotte Laufkötter; Paul Ginoux; Niki Zadeh; Charles A. Stock; +3 Authors

Ocean Biogeochemistry in GFDL's Earth System Model 4.1 and Its Response to Increasing Atmospheric CO2

Abstract

AbstractThis contribution describes the ocean biogeochemical component of the Geophysical Fluid Dynamics Laboratory's Earth System Model 4.1 (GFDL‐ESM4.1), assesses GFDL‐ESM4.1's capacity to capture observed ocean biogeochemical patterns, and documents its response to increasing atmospheric CO2. Notable differences relative to the previous generation of GFDL ESM's include enhanced resolution of plankton food web dynamics, refined particle remineralization, and a larger number of exchanges of nutrients across Earth system components. During model spin‐up, the carbon drift rapidly fell below the 10 Pg C per century equilibration criterion established by the Coupled Climate‐Carbon Cycle Model Intercomparison Project (C4MIP). Simulations robustly captured large‐scale observed nutrient distributions, plankton dynamics, and characteristics of the biological pump. The model overexpressed phosphate limitation and open ocean hypoxia in some areas but still yielded realistic surface and deep carbon system properties, including cumulative carbon uptake since preindustrial times and over the last decades that is consistent with observation‐based estimates. The model's response to the direct and radiative effects of a 200% atmospheric CO2 increase from preindustrial conditions (i.e., years 101–120 of a 1% CO2 yr−1 simulation) included (a) a weakened, shoaling organic carbon pump leading to a 38% reduction in the sinking flux at 2,000 m; (b) a two‐thirds reduction in the calcium carbonate pump that nonetheless generated only weak calcite compensation on century time‐scales; and, in contrast to previous GFDL ESMs, (c) a moderate reduction in global net primary production that was amplified at higher trophic levels. We conclude with a discussion of model limitations and priority developments.

Country
Switzerland
Keywords

Physical geography, 530 Physics, GC1-1581, Oceanography, ocean biogeochemistry, GB3-5030, climate change, carbon cycle, Earth System Model, marine ecosystems

Powered by OpenAIRE graph
Found an issue? Give us feedback