Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Biogeochemical Cycles
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Biogeochemical Cycles
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.5445/ir/...
Article . 2021
License: CC BY NC ND
Data sources: Datacite
GEO-LEO e-docs
Article . 2021
Data sources: GEO-LEO e-docs
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate Change Can Accelerate Depletion of Montane Grassland C Stocks

Authors: Klaus Butterbach-Bahl; Klaus Butterbach-Bahl; Na Wang; Christine L. Goodale; Longlong Xia; Ralf Kiese;

Climate Change Can Accelerate Depletion of Montane Grassland C Stocks

Abstract

AbstractClimate warming and management will likely affect carbon (C) fluxes of montane grassland ecosystems. In this study, we assessed the effect of simultaneous warming (+2°C) and decreased precipitation (−25%) on carbon exchange of montane grasslands in S‐Germany by translocating large intact plant‐soil cores from a high altitude to a low altitude site. Cores received two common grassland management regimes: intensive (4–5 cuts and slurry application) and extensive (1–2 cuts and slurry application). Diurnal patterns of net ecosystem exchange (NEE) and total ecosystem respiration (Reco) were measured over 1.5 years in 2–3 weeks intervals during the snow free period. Additional data on environmental controls, that is, photosynthetic active radiation, grass height and soil moisture and temperature, were used to develop empirical models to estimate daily and annual fluxes of gross primary production (GPP) and Reco. Considering the 2 years period (2014 and 2015), we found that, under warmer and slightly drier conditions, both GPP and Reco significantly (p < 0.01) increased (up to 20%) but with a higher temperature sensitivity of Reco, particularly in intensive managed grassland. The higher temperature sensitivity of Reco reduced the NEE by 0.7 t C ha−1 yr−1 for both extensive and intensive management, respectively. Considering additional carbon inputs via slurry and exports via harvest (i.e., annual net ecosystem carbon budget), our results showed that managed grasslands are already a source of C under current climate conditions (1.7–1.8 t ha−1 yr−1) which significantly (p < 0.05) increased under climate warming (2.3–2.9 t ha−1 yr−1).

Countries
Germany, France, France, Germany
Keywords

info:eu-repo/classification/ddc/550, 550, ddc:550, ddc:630, stocks, 630, ddc:577.22, Earth sciences, climate change, climate

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
hybrid