Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della Ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Advances in Modeling Earth Systems
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatio‐Temporal Coarse‐Graining Decomposition of the Global Ocean Geostrophic Kinetic Energy

Authors: Buzzicotti, M.; Storer, B. A.; Khatri, H.; Griffies, S. M.; Aluie, H.;

Spatio‐Temporal Coarse‐Graining Decomposition of the Global Ocean Geostrophic Kinetic Energy

Abstract

AbstractWe expand on a recent determination of the first global energy spectrum of the ocean's surface geostrophic circulation (Storer et al., 2022, https://doi.org/10.1038/s41467-022-33031-3) using a coarse‐graining (CG) method. We compare spectra from CG to those from spherical harmonics by treating land in a manner consistent with the boundary conditions. While the two methods yield qualitatively consistent domain‐averaged results, spherical harmonics spectra are too noisy at gyre‐scales (>1,000 km). More importantly, spherical harmonics are inherently global and cannot provide local information connecting scales with currents geographically. CG shows that the extra‐tropics mesoscales (100–500 km) have a root‐mean‐square (rms) velocity of ∼15 cm/s, which increases to ∼30–40 cm/s locally in the Gulf Stream and Kuroshio and to ∼16–28 cm/s in the ACC. There is notable hemispheric asymmetry in mesoscale energy‐per‐area, which is higher in the north due to continental boundaries. We estimate that ≈25%–50% of total geostrophic energy is at scales smaller than 100 km, and is un(der)‐resolved by pre‐SWOT satellite products. Spectra of the time‐mean circulation show that most of its energy (up to 70%) resides in stationary eddies with characteristic scales smaller than (<500 km). This highlights the preponderance of “standing” small‐scale structures in the global ocean due to the temporally coherent forcing by boundaries. By coarse‐graining in space and time, we compute the first spatio‐temporal global spectrum of geostrophic circulation from AVISO and NEMO. These spectra show that every length‐scale evolves over a wide range of time‐scales with a consistent peak at ≈200 km and ≈2–3 weeks.

Country
Italy
Keywords

Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, energy spectrum, Fluid Dynamics (physics.flu-dyn), coarse-graining, FOS: Physical sciences, Physics - Fluid Dynamics, 551, modelli, Physics - Atmospheric and Oceanic Physics, metodi matematici e applicazioni, ocean mesoscales, Atmospheric and Oceanic Physics (physics.ao-ph), standing eddies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold