Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2005
Nature
Article . 2004 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry

Authors: Sergio A. Sañudo-Wilhelmy; Antonio Tovar-Sánchez; Antonio Tovar-Sánchez; Fei-Xue Fu; Edward J. Carpenter; David A. Hutchins; Douglas G. Capone;

The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry

Abstract

The Redfield ratio of 106 carbon:16 nitrogen:1 phosphorus in marine phytoplankton is one of the foundations of ocean biogeochemistry, with applications in algal physiology, palaeoclimatology and global climate change. However, this ratio varies substantially in response to changes in algal nutrient status and taxonomic affiliation. Here we report that Redfield ratios are also strongly affected by partitioning into surface-adsorbed and intracellular phosphorus pools. The C:N:surface-adsorbed P (80-105 C:15-18 N:1 P) and total (71-80 C:13-14 N:1 P) ratios in natural populations and cultures of Trichodesmium were close to Redfield values and not significantly different from each other. In contrast, intracellular ratios consistently exceeded the Redfield ratio (316-434 C:59-83 N:1 intracellular P). These high intracellular ratios were associated with reduced N2 fixation rates, suggestive of phosphorus deficiency. Other algal species also have substantial surface-adsorbed phosphorus pools, suggesting that our Trichodesmium results are generally applicable to all phytoplankton. Measurements of the distinct phytoplankton phosphorus pools may be required to assess nutrient limitation accurately from elemental composition. Deviations from Redfield stoichiometry may be attributable to surface adsorption of phosphorus rather than to biological processes, and this scavenging could affect the interpretation of marine nutrient inventories and ecosystem models.

Country
Spain
Keywords

Algae, Physiology, Nitrogen, Cyanobacteria, Ecosystems, Algal physiology, Nitrogen fixation, Nitrogen Fixation, Climate change, Atlantic Ocean, Manganese, Phosphorus, Biogeochemistry, Carbon, Trichodesmium, Phytoplankton, Adsorption

Powered by OpenAIRE graph
Found an issue? Give us feedback