
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Warming impairs trophic transfer efficiency in a long-term field experiment

Warming impairs trophic transfer efficiency in a long-term field experiment
In ecosystems, the efficiency of energy transfer from resources to consumers determines the biomass structure of food webs. As a general rule, about 10% of the energy produced in one trophic level makes it up to the next1-3. Recent theory suggests that this energy transfer could be further constrained if rising temperatures increase metabolic growth costs4, although experimental confirmation in whole ecosystems is lacking. Here we quantify nitrogen transfer efficiency-a proxy for overall energy transfer-in freshwater plankton in artificial ponds that have been exposed to seven years of experimental warming. We provide direct experimental evidence that, relative to ambient conditions, 4 °C of warming can decrease trophic transfer efficiency by up to 56%. In addition, the biomass of both phytoplankton and zooplankton was lower in the warmed ponds, which indicates major shifts in energy uptake, transformation and transfer5,6. These findings reconcile observed warming-driven changes in individual-level growth costs and in carbon-use efficiency across diverse taxa4,7-10 with increases in the ratio of total respiration to gross primary production at the ecosystem level11-13. Our results imply that an increasing proportion of the carbon fixed by photosynthesis will be lost to the atmosphere as the planet warms, impairing energy flux through food chains, which will have negative implications for larger consumers and for the functioning of entire ecosystems.
- Queen Mary University of London United Kingdom
- Imperial College London United Kingdom
- Nord University Norway
- Australian Institute of Marine Science Australia
- University of Western Australia Australia
570, Food Chain, Time Factors, 550, Nitrogen, stable isotopes, Fresh Water, efficiency of energy transfer, 551, Global Warming, nitrogen, Carbon Cycle, Biomass, Photosynthesis, zoo-plankton, biomass, carbon, Plankton, Carbon, stoichiometry, Lakes, phytoplankton
570, Food Chain, Time Factors, 550, Nitrogen, stable isotopes, Fresh Water, efficiency of energy transfer, 551, Global Warming, nitrogen, Carbon Cycle, Biomass, Photosynthesis, zoo-plankton, biomass, carbon, Plankton, Carbon, stoichiometry, Lakes, phytoplankton
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).86 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
