
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recruitment Drives Spatial Variation in Recovery Rates of Resilient Coral Reefs

AbstractTropical reefs often undergo acute disturbances that result in landscape-scale loss of coral. Due to increasing threats to coral reefs from climate change and anthropogenic perturbations, it is critical to understand mechanisms that drive recovery of these ecosystems. We explored this issue on the fore reef of Moorea, French Polynesia, following a crown-of-thorns seastar outbreak and cyclone that dramatically reduced cover of coral. During the five-years following the disturbances, the rate of re-establishment of coral cover differed systematically around the triangular-shaped island; coral cover returned most rapidly at sites where the least amount of live coral remained after the disturbances. Although sites differed greatly in the rate of return of coral, all showed at least some evidence of re-assembly to their pre-disturbance community structure in terms of relative abundance of coral taxa and other benthic space holders. The primary driver of spatial variation in recovery was recruitment of sexually-produced corals; subsequent growth and survivorship were less important in shaping the spatial pattern. Our findings suggest that, although the coral community has been resilient, some areas are unlikely to attain the coral cover and taxonomic structure they had prior to the most recent disturbances before the advent of another landscape-scale perturbation.
- California State University, Northridge United States
- Coastal Carolina Research Center United States
- California State University, Northridge United States
- University of California, Santa Barbara United States
- University of California System United States
570, Coral Reefs, Science, Climate Change, Q, 590, R, Anthozoa, Article, Polynesia, Starfish, Medicine, Animals, Longitudinal Studies, Ecosystem, Demography
570, Coral Reefs, Science, Climate Change, Q, 590, R, Anthozoa, Article, Polynesia, Starfish, Medicine, Animals, Longitudinal Studies, Ecosystem, Demography
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).108 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
