
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cold-season disasters on the Eurasian steppes: Climate-driven or man-made

Cold-season disasters on the Eurasian steppes: Climate-driven or man-made
AbstractSocio-ecological damage from climate-related disasters has increased worldwide, including a type of cold-season disaster (dzud) that is unique to the Eurasian steppes, notably Mongolia. During 2000–2014, dzuds killed approximately 30 million livestock and impacted the Mongolian socio-economy. The contributions of both natural and social processes to livestock mortality were not previously considered across Mongolia. Here, we consider the contribution of both multiple climate hazards (drought, cold temperatures and snow), and socioeconomic vulnerability (herders’ livestock and coping-capacity) to mortality risk. We performed multi-regression analyses for each province using meteorological, livestock and socioeconomic datasets. Our results show that 93.5% of mortality within Mongolia was caused by a combination of multi-hazards (47.3%) and vulnerability (46.2%), suggesting dzuds were both climate- and man-made. However, in high-mortality hotspots, mortality was primarily caused by multi-hazards (drought-induced pasture deficiency and deep-snow). Livestock overpopulation and a lack of coping capacities that caused inadequate preparedness (e.g., hay/forage) were the main vulnerability factors. Frequent and severe multi-hazards greatly increased the mortality risk, while increased vulnerability caused by socioeconomic changes in Mongolia since the 1990s tended to amplify the effects of multi-hazards. Thus, reductions in herder vulnerability within high-mortality hotspots would likely be an effective means of mitigating the risk of future dzuds.
- Nagoya University Japan
- National University of Mongolia Mongolia
- National University of Mongolia Mongolia
- Nagoya University Japan
- Inner Mongolia Agricultural University China (People's Republic of)
Livestock, Climate, Climate Change, Mongolia, Grassland, Article, Cold Temperature, Disasters, Snow, Animals, Humans, Seasons, Ecosystem
Livestock, Climate, Climate Change, Mongolia, Grassland, Article, Cold Temperature, Disasters, Snow, Animals, Humans, Seasons, Ecosystem
1 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
