Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy & Environmental Science
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO2 capture

Authors: Gutiérrez, María; Carriazo, Daniel; ANIA, Conchi,; Parra, José; Ferrer, M. Luisa; del Monte, Francisco;

Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO2 capture

Abstract

Deep eutectic solvents (DESs) have been used in the synthesis of nitrogen-doped carbons exhibiting a hierarchical porous structure. The CO2 sorption capacity of these solid sorbents was extraordinary because of their relatively high nitrogen content and their bimodal porous structure where micropores provide high surface areas (ca. 700 m2 g−1) and macropores provide accessibility to such a surface. DESs were composed of resorcinol, 3-hydroxypyridine and choline chloride in 2 : 2 : 1 and 1 : 1 : 1 molar ratios. Polycondensation of resorcinol and 3-hydroxypyridine (with formaldehyde) promoted DES segregation in a spinodal-like decomposition process by the formation of a polymer rich phase and a depleted polymer phase. Thus, DESs played a multiple role in the synthetic process; the liquid medium that ensured reagents homogenization, the structure-directing agent that is responsible for the achievement of the hierarchical structure, and the source of carbon and nitrogen of the solid sorbent obtained after carbonization. Interestingly, the homogeneous incorporation of nitrogen at the solution stage of the synthetic process (rather than by post-treatment of the preformed carbon) allowed the achievement of significant nitrogen contents even in carbons obtained at relatively high temperatures (e.g. 8–12 at% for 600 °C and ca. 5 at% for 800 °C). It is worth noting that, despite thermal treatments at high temperatures tend to decrease the nitrogen content, the high surface area of the solid sorbents obtained at 800 °C contributed to a significant enhancement of CO2 capture while providing superior selectivity, recyclability and stability.

Keywords

[SDE.IE]Environmental Sciences/Environmental Engineering, [CHIM.CATA]Chemical Sciences/Catalysis, [CHIM.MATE]Chemical Sciences/Material chemistry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    188
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
188
Top 1%
Top 10%
Top 1%
Related to Research communities
Energy Research