Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Green Chemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Green Chemistry
Article . 2013
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Green Chemistry
Article . 2013
Data sources: VIRTA
Green Chemistry
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of O/W microemulsions to penetrate the capillary structure of woody biomass: interplay between composition and formulation in green processing

Authors: Carlos A. Carrillo; Carlos A. Carrillo; Orlando J. Rojas; Orlando J. Rojas; Daniel Saloni;

Evaluation of O/W microemulsions to penetrate the capillary structure of woody biomass: interplay between composition and formulation in green processing

Abstract

The ability of microemulsions to overcome the complex capillary structure of wood is revealed in relation to its composition and formulation. The oil phase (limonene in this study) of O/W microemulsions is found to be critical for effective flooding. The type of amphiphile molecule used, including sodium lignosulfonate and alkyl polyglucosides as well as reference sodium dodecylsulfate and silicone-based surfactants, together with the viscosity of the resulting microemulsions were the main factors determining the dynamics and extent of fluid penetration. The associated observations were ascribed to the balance of the affinities of the surfactants for the substrate and its conductive elements. Owing to the inherent morphological and chemical features, large differences were observed as far as impregnation susceptibility of different wood types is concerned. By using appropriate surfactant mixtures it was possible for the microemulsions to penetrate the most recalcitrant woody biomass studied, with efficiencies up to 83% higher than that of water, at atmospheric pressure and room temperature. Application of microemulsions is a new alternative for green and efficient pre-treatment of woody biomass in biorefineries, to deliver (bio)chemical functions to the constrained spaces of the cell wall and to increase its accessibility.

Keywords

PRETREATMENT, OIL-WATER SYSTEMS, AFFINITY INVERSION, SIZE, ETHANOL, IMPREGNATION, VISCOSITY, EMULSION

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average